Federated Identity for loT with
OAuth

Paul Fremantle
CTO, WSO?2 (paul@wso2.com)
PhD researcher, Portsmouth University
(paul.fremantle@port.ac.uk)
@pzfreo

How this will work

Quick intro to Federated Identity and Access
Management

Even quicker introduction to OAuth2
MQTT overview

Demo

Issues

Next steps

UNITEDO FEOERATION OF PLANETS

What is Federated Identity and Access
Management (FIAM)?

Federated IAM aims to give You control over
your credentials and access:

* You don’t give your userid/pw to anyone

* You control the grant of permissions

* Linkedln example

* OAuth2 emerging as widely used approach

Why FIAM for loT?

* Your device = Your data
* Tokens are better than u/p for devices

 Manage tokens and scopes independently of
the device

How T okens Work

User Resource,Serveﬂ AvthServer

| |
l 03111
i }
(+oken

vser never passes their
vsenrd/password to the resource server
+oken
opt J ul-fer'nocﬁvejy VQlio(a+e, Via sly\od'vre;.’ o
VQ!io(a-fe, Wen»
(okl
okl
Do something
User I‘Re:»ovr‘ceSe,rve,r] AvthServer

www.websequencediagrams.com

Why OAuth2?

 Widely implemented

* Pretty good
— Of course there is never 100% agreement
— Or certainty with security protocols

* Not just HTTP:

— http://tools.ietf.org/html/draft-ietf-kitten-sasl-
oauth-12

— OAuth2 used with SSL

Three-legged OAuth

 User ~ Consumer - Service Provider

6.1 Obtaining an Unauthorized Request Token

6.1.1. Consumer Obtains a Request Token

’)
< 6.1.2. Service Provider Issues an Unauthorized Request Token

6.2 Obtaining User Authorization

< 6.2.1. Consumer Directs the User to the Service Provider

Redirect to Service Provider

> .

< 6.2.2. Service Provider Authenticates the User and Obtains Consent

Authenticate and Consent

’)
6.2.3. Service Provider Directs the User Back to the Consumer

-~
Redirect to Consumer >
6.3 Obtaining an Access Token
6.3.1. Consumer Requests an Access Token >
< 6.3.2. Service Provider Grants an Access Token
 User ~ Consumer - Service Provider

www.websequencediagrams.com

MQTT

Publisher

& @

MQTT
f! Messenger

Free texting from Facebook

Subscriber

MQTT

* Very lightweight messaging protocol
— Designed for 8-bit controllers, SCADA, etc
— Low power, low bandwidth
— Binary header of 2 bytes

— Lots of implementations
* Mosquitto from Eclipse
* Apache ActiveMQ and Apollo

— Clients:
* Arduino, Perl, Python, PHP, C, Java, JS/Node.js, .Net, etc

* Plus an even lighter-weight version for Zigbee
— MQTT-SN (Sensor Network)

MQTT QOS2 flow

—
Publisher Broker Subscriber

CONNECT)

(CONNACK T
(CONNECT .

CONNACK)
(SUBSCRIBE (Topic: /pzf, QoS: 2)

SUBACK >

_QUBLISH (d0, g2, r0, m1, '/pzf', hello)

PUBLISH (d0, g2, r0, m1, "/pzf, hello))

(_ PUBREC .
PUBREC
ﬂ‘ PUBREL)
PUBREL

< PUBCOMP

< PUBCOMP
DISCONNECT

Publisher ' Broker Subscriber ’

www.webseguencediagrams.com

‘ deliver to app “hello”

Demo components

@

CreateToken.py

Refresher.py

o)

Mosquitto IdP
(Open Source MQTT

) SIS WSO?2 Identity

Arduino Server

\
ﬁ Acting as “Resource
Server”

Mosquitto_py_auth ESB
Introspection
mqtt-oauth2.py API

Demo steps

1. Get an access-token / refresh-token

2. Encode it into the Arduino code, compile, burn
3. Reboot Arduino

4. Arduino tries access token

5. Arduino connects as “refresh user” and requests refresh
token

6. Arduino receives updated access token and reconnects
7. Arduino starts to publish data (assuming it is allowed!)

8. Python client receives data using a previously authorized
token

Step 1. Get a token

Simple python script and web browser

Encodes the requested permission “scopes” as
b64 encoded JSON (ugly but works!)

Scope — I[{ rWII IIWII lltOpICII ll/pzf/#ll}]
IdP = WSO2 Identity Server
— open source Oauth server

Redirects to a localhost server which prints
the code

Step 2. Burn into Arduino

* Little program burns into EEPROM

Step 3,4,5,6
Recode Arduino with App

App tries access token to CONNECT

o
I

(refresh)

— |ldeally this would be a separate server / IdP-based
broker

If fails, retries as user

Sends {clientid, refresh token} to topic /r
Subscribes to /c/{clientid}

When new access_token arrives, saves in
EEPROM and reconnects

Step 7. Arduino publishes data

* MPU 9150
* Yaw, Pitch, Roll
* Every publish is validated against the IdP

— Should be cached by the resource server

Step 8. Python client subscribes

e Subscriber.py

Lessons learnt

MQTT and MPU / 12C code is 97% of Duemilanove
— Adding the final logic to do OAuth2 flow pushed it to 99%

— No TLS in this demo is a big issue

Different Oauth implementations behave differently (e.g.
changing the refresh token every time you refresh)

Need to be able to update the scope of token if this will
work for long term embedded devices

The refresh flow should not really go via the Resource
server

— Easy fix

MQTT should have a well defined model for sending a
message to just one client (securely)

Next steps

Do the same for CoAP / other IoT protocols
Implement solidly ©
Gain agreement on the specific MQTT

Other FIAM approaches for 1oT?
— OpenlD Connect?
Please feel free to contact me:

— @pzfreo
— paul@wso2.com

