Four years of Go at CloudFlare

John Graham-Cumming

Al

CLOUDFLARE

CloudFlare

You likely use us without knowing it...

Frankfurt
Amsterdam
London
Paris

Milan

Madrid Q

9 /~Chicago
Seattle /. Toronto
San Jose 99 Q & Newark
Los Angeles Q\

Ashburn
- Atlanta Casablanca
Denver '!Miami
Dallas

Mexico City

Q Medellin

Lima

QSao Paulo

Valparaiso 9
Q Current

Planned

Buenos Aires

~Stockholm

Prague
== Vienna

Tel Aviv

Mombasa

Johannesburg

¢ [Warsaw
\ \ | Moscow

Shijiazhuang
Zhengzhou
Xi‘an
Chengdu

New Delhi Wuhan

Bangkok

Mumbai
Chennai

Kuala Lumpur 9
Singapore
Jakarta

N\

Jinan
Shenyang
~ Seoul

QTokyo
Suzhou
Fuzhou
Taipei
Manila
Hong Kong
Foshan
Nanning

Sydney -

Auckland

CLOUDFLARE

Server Languages 2011

Server Languages 2011

Server Languages 2011

Server Languages 2015

WWW
PHP backend

Al

CLOUDFLARE

Server Languages 2015

t
e ine ngx_lua/OpenResty
AAYY
PHP backend

Al

CLOUDFLARE

Server Languages 2015

Lua

C++ eliminated

Server Languages 2015

Server Languages 2015

People often ask me:
““How did you persuade
CloudFlare to use Go?”

Al

CLOUDFLARE

Back in mid-1980s...

C.A.R.Hoare
Communicating
Sequential
Processes

CLOUDFLARE

A couple of years later...

So far we have developed a simple file-store which services requests
along a pair of channels. We now develop a process P; which takes
requests from any user u; along channel ¢.j.in and returns replies along
i.7.0out. Requests which are disallowed, because of the restrictions ‘no
read—up’ and ‘no write-down’, return the message er; but valid requests
are passed to the local file-store F; and its replies are forwarded to the
user who made the request.

Definition 5.16

Q’Pi

OEFZ'
U
{ij.in.(c,f,d)| (c,f,d) € OP A u; € USR}
U

{i.j.out.m | m € DAT U MSG A u; € USR};
P; = | ij.in?(c,f,d) — (RI(f,d) C c =rd B WI(f,d));

u; € USR

RZ(f d) 2 (i.j.outler — P; C j < iB ¢.5.Finl(xrd, f,d) — PZ);

<

WZ(f, d) 2 (i.j.outler - P; C j > i B i.j.Fin!(wr, f,d) — PZ);
| CLOUDFLARE

. A

A couple of years later...

So far we have developed a simple file-store which services requests
along a pair of channels.) We now develop a process P; which takes
requests from any user u; along channel 7.7.2n and returns replies along

i.7.0out. Requests which are disallowed, because of the restrictions ‘no
read—up’ and ‘no write-down’, return the message er; but valid requests
are passed to the local file-store F; and its replies are forwarded to the
user who made the request.

Definition 5.16

aPi

aFi
U
{ij.in.(c,f,d)| (c,f,d) € OP A u; € USR}

U

{i.j.out.m | m € DAT U MSG A u; € USR};

P; = [(ig.in?%(c,f,d))~ (Ri(f,d) C c = rd B Wi(f, d));

u; €U

RI(f,d) = P;Cj < iBij.Finl(rd,f,d) — P);

W (f, d) = (i.j.outler — P; C j > i B i.j.Fin!(wr, f, d) — P?); é

. A . CLOUDFLARE

Ooccdim

PROC procD(CHAN repl[], req[], VALUE i) =
CHAN F.in[nu], F.out[nu] :
PROC procF(CHAN in[], out[]) =

VAR s[nf],
cmd [3] :

SEQ
SEQ f = [0 FOR nf]
s[f] := -1
WHILE TRUE
ALT j = [0 FOR nu]
in[j] ? cmd[0 FOR 2]
IF
cmd [0] = Rd
IF
s[emd[1]] < O
out[j] ! Er
TRUE
out[j] ! s[cmd[1]]
cmd [0] = Wr
SEQ
s[ecmd[1]] := cmd[2]
out[j] ! Ok :

PROC procP(CHAN rep[], reql[], in[], out[], VALUE i) =

Al

VAR cmd [3],

CLOUDFLARE

OK

So, I’'m a concurrent-processes-
communicating-via-channels hipster

Al

CLOUDFLARE

CLOUDFLARE

Railgun (2012)

First major Go project at CloudFlare

* Wrote prototype in Perl

Delta-compression based acceleration for origin connections

16,626 lines of Go; 2,518 lines of Go tests

» Single executable deployment == happiness

CloudFlare WAN protocol
(2x performance gain) HFTP —

' 5 — Visitor

CloudFlare data center —

Customer site hosted
by optimized partner

CLOUDFLARE

RRDNS (2013)

« Authoritative DNS server — has to be fast!
» Also does DNS proxying and DNSSEC

* 15,143 lines of Go; 9,377 lines of Go tests

January 2015 DNS Speed Comparison Report

Speed in Milliseconds
0 10 20 30 40 50 60 70 80 90 100 110 120

Al

CLOUDFLARE

CFSSL (2014)

« TLS/SSL/PKI Toolkit
« Canbe usedasacCA

» Does optimal cert bundling

» https://github.com/cloudflare/cfssl

Al

CLOUDFLARE

https://github.com/cloudflare/cfssl

Polish (2014)

Automatic image recompression

Recompresses images in CloudFlare cache in
background

Uses cgo to talk to Freelmage and shells out to
ongcrush, etc.

5,977 lines of Go; 3,635 lines of Go tests

Al

CLOUDFLARE

Data (2014)

» CloudFlare’s event log aggregation and analysis
» Event log forwarding

« Attack analysis
» Use Cap’n Proto instead of gob

* 103,986 lines of Go; 36,585 lines of Go tests

Al

CLOUDFLARE

Started using Go pre-v1.0

» First Go project shipped using go1.0.2 (mid-2012)

Al

CLOUDFLARE

Started using Go pre-v1.0

» First Go project shipped using go1.0.2 (mid-2012)
« crypto and compression were slow

 used cgo to call C/assembler code

CLOUDFLARE

Started using Go pre-v1.0

» First Go project shipped using go1.0.2 (mid-2012)
» crypto and compression were slow
 used cgo to call C/assembler code

* log/syslog was “odd”

CLOUDFLARE

Started using Go pre-v1.0

First Go project shipped using go1.0.2 (mid-2012)
crypto and compression were slow

 used cgo to call C/assembler code

log/syslog was “odd”

Worst problem... on BSD

void runtime-SysUnused(void *v, uintptr n)
{
USED (V) ;
USED(n);
// TODO(rsc): call madvise MADV DONTNEED
} A

CLOUDFLARE

What we write in Go

* “Production Lines”
* Small programs that do small jobs and need to scale up and down

* Polish, data pipeline

Al

CLOUDFLARE

What we write in Go

* “Production Lines”
* Small programs that do small jobs and need to scale up and down
* Polish, data pipeline

* “Cronnies”

* Small programs that run periodically but sometimes need a kick

CLOUDFLARE

What we write in Go

* “Production Lines”
* Small programs that do small jobs and need to scale up and down
* Polish, data pipeline
* “Cronnies”
* Small programs that run periodically but sometimes need a kick
* “Network 1/O”
* Programs that do a lot of network 1/O

+ RRDNS, Railgun

CLOUDFLARE

What we write in Go

“Production Lines”
* Small programs that do small jobs and need to scale up and down
* Polish, data pipeline
“Cronnies”
* Small programs that run periodically but sometimes need a kick
“Network 1/O0”
* Programs that do a lot of network 1/O
* RRDNS, Railgun
“Crypto Things”

* Internal cryptographic tools

CLOUDFLARE

What we didn’t write in Go

« Keyless SSL

Seemed like a good idea at

» Wanted to link against OpenSSL REL e

* 4,175 lines of C; 2,044 lines of tests

Al

CLOUDFLARE

What we didn’t write in Go

« Keyless SSL

» Wanted to link against OpenSSL

* 4,175 lines of G 2,044 lines of tests Uses libuv for concurrency

Al

CLOUDFLARE

Aside: Shakespeare as
OpenSSL programmer

MACDUFF
O horror, horror, horror!
Tongue nor heart cannot conceive nor name thee!

MACBETH & LENNOX
What's the matter?

MACDUFF
Confusion now hath made his masterpiece.

Al

CLOUDFLARE

What we didn’t write in Go

« Keyless SSL

» Wanted to link against OpenSSL

e 4,175 lines of C; 2,044 lines of tests
» “Request Logic”

» nginx integration with LuaJIT excellent and fast
* www backend

 Lots of legacy PHP code

CLOUDFLARE

What we didn’t write in Go

« Keyless SSL

» Wanted to link against OpenSSL

* 4,175 lines of C; 2,044 lines of tests
» “Request Logic”

» nginx integration with LualIT excellent and fast
« www backend

 Lots of legacy PHP code

CLOUDFLARE

Today’s Pain Points

» Garbage Collection
« Stop the world is a world of hurt

» Spend significant effort on eliminating garbage
creation

» Third-party import management

Al

CLOUDFLARE

Garbage Elimination

* Top tips (thanks Daniel Morsing!)
¢ Use io.Reader/io.Writer
« Don’t allocate small structs; pass them by value

« Use arrays for buffers instead of slices when you
can

e Profile!

Al

CLOUDFLARE

Lots of little programs

» torhoney: get list of Tor exit nodes, score against
Project Honeypot

» https://github.com/cloudflare/golibs

« bytepool, circularbuffer, ewma, lrucace, pool,
Spacesaving

* http://cloudflare.github.io/#cat-Go

Al

CLOUDFLARE

https://github.com/cloudflare/golibs
http://cloudflare.github.io/#cat-Go

